BONNEVILLE DOWNSTREAM SILL EMERGENCY REPAIR

Matthew Hanson
Chief, Structural Design Section
Joel Prusi
Structural Engineer
Portland District
Date: 25 February 2020

revised
SYSTEM TONNAGE DISTRIBUTION

Annual Lock Tonnage
Bonneville - McNary - IceHarbor

<table>
<thead>
<tr>
<th></th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonneville</td>
<td>8,881</td>
<td>7,475</td>
<td>7,521</td>
<td>5,173</td>
<td>8,402</td>
</tr>
<tr>
<td>McNary</td>
<td>6,014</td>
<td>5,025</td>
<td>4,973</td>
<td>3,557</td>
<td>5,235</td>
</tr>
<tr>
<td>Ice Harbor</td>
<td>2,726</td>
<td>3,355</td>
<td>3,110</td>
<td>2,291</td>
<td>2,808</td>
</tr>
</tbody>
</table>

KTONS
Summary of navigation lock operations from August 22 to September 5, prior to the lock closure:

- Aug 22, Thursday: Project maintenance crew performed an inspection on Miter gate 4 (south leaf) for an overtravel condition.
- Sept 1, Sunday, 8 lockages, Gate 4 jam reported at 1638, Gate 3 jam reported at 1640 on the 6th lockage of the day. Gates jam reported at 7% closed. Gate was then closed. Project maintenance staff performed a machinery check at 1730. Gate 3 Jam reported at 1800. Gate 4 jam reported at 1930.
- Sept 2, Monday, 10 lockages, unsure of reported gate jams.
- Sept 3, Tuesday, 3 lockages, maintenance crew did not find any problems. Two jams reported for Gate 3, five jams were reported for Gate 4. All cleared after jog to close.
- Sept 4, Wednesday, 11 lockages, 10 gate jam alarms all day.
- Sept 5, Thursday AM, 4 lockages, lock closed at 1325.
- Sept 6, AAC placed Stoplogs, lock dewatering operations started
- Sept 7, 0730, Engineering staff onsite for dewatered lock inspection
Miter gate arrangement of sill plate and concrete
Miter gates have two fundamental load conditions, which drive their design:

- Chamber filled - gate acts as a three-hinged arch, carrying the load to the quoin blocks
- Chamber empty - gate must support its own weight. The entire weight of a leaf is supported on the pintle, which is a hemispherical casting at the bottom of the gate. The top of the gate is prevented from rotating by the gudgeon, where tension members carry the reaction load into the wall.

The sill block that failed does not carry any load from the gate, with only a rubber seal touching it. So the location of the sill block and its seal plate were critical to allow the lock to hold water.
DESIGN OF A MITER GATE
LOCK CHAMBER DEWATERED
BONNEVILLE SILL DAMAGE

Inspection of damaged sill took place Saturday, September 7, 0900-1030

Primary failure of the downstream sill block from uplift

The south side of the sill uplifted 3.25”, center 1.75”, north side 0”

Sill lost integrity on downstream face with spalled concrete, fractured reinforcement
DOWNSTREAM SILL DAMAGE
BONNEVILLE SILL DAMAGE

- Significant spalling
- Failed anchorage
- Uplifted sill in contact with the gate
- Evidence of cyclic loading on sill

- Gate components looked OK
- Pintles looked OK
- Operating Machinery had concerns
- Operating recorded data was lacking
BONNEVILLE LOCK DAMAGE SUMMARY

Downstream sill failed

Downstream miter gate appeared undamaged

Mechanical operations of the gate appeared undamaged

NECESSARY REPAIR

• Replace sill
• Minor changes to mechanical equipment and electrical controls
BONNEVILLE DOWNSTREAM SILL DESIGN

Original Design

• 18” vertical offset
• Anchorage into lock floor elevation -17.0
• Design for shear load only
• No uplift load design
Likely cause of failure:
• Downstream sill not constructed according to original design assumptions, upstream interface El. -15.5

• Sill concrete to lock floor interface was likely not prepared adequately

• Upstream anchors were not installed into structural concrete

• Sill was not designed for uplift

• Failure over time from a cyclic loading on poor anchorage and poor bond to original concrete interface allowed uplift and bond failure to progress
EXISTING SILL DEMOLITION
BONNEVILLE LOCK REPAIR ACTIONS

Design for new downstream sill block:

- Site visit performed September 7
- Remove existing sill (contract drawings produced by September 8)
- Design for full uplift across full width of sill (very conservative, but fast) 450 anchors original design at 8” spacing
- The design was ready by September 10
- Locate new sill according to actual gate position
NEW SILL LOCATION

Sill survey September 10 to locate the sill

Upstream sill location to be determined on a second stage placement
LOCK CHAMBER PREPARATION FOR NEW SILL
ANCHOR DRILLING PROBLEMS

- Anchor drilling commenced according to the original drilling plan.
- Note 1 hole to 33” depth out of 74 total holes
- The original success rate was about 6%
- The drill holes were hitting rebar at 7, 13, 18, 24 depth

9/12/19, 5:37pm Shad Huber, AAC
Superintendent photos of field book
“Last night we completed the keyway demo and drilled 45 more holes with only 2 reaching 33 inches. Total count is as follows:

33 inch holes 25 total holes
20 inch holes 12 total holes

I estimate that we attempted drill over 500 holes in last few days.”

-Shad Huber, AAC Superintendent, 9/15/19 7:23AM
EXISTING LOCK CHAMBER U FRAME

Why are we having this Problem?
Existing Reinforcement:

#11 bars 6” on center 4 layers transverse
#8 bars 12” on center 4 layers parallel
2 - 12’ long splice zones

Best case gap 6”-1.41” = 4.59”

Anchor hole = 1.25” x 33”

Layers are not placed on top of each other to any tolerance in general

Percussion drills do not go through reinforcement, OK for Epoxy anchors
ANCHOR DRILLING PROBLEMS

This is the top layer of reinforcement
ANCHOR DRILLING PROBLEMS

The drilling lack of success led to a change to the original anchorage design.

• Can we reduce the number of anchors?
• Can we use partial depth holes?
• Can we drill through reinforcement?

Final determination:
• Vary design load 100% upstream face to 50% the different between Pool and TW @ D/S face
• Use shear key, to take all horizontal load. Also, use shear key to expose reinforcement for drilling
 (Reduced the total number of #8 bar anchors from 450 to 302)
• Cannot use partial depth holes, use full depth anchor (33” depth, 1.25” dia)
 (partial depth holes consider cone breakout with cone overlap)
• Test 1 in 20 anchors to 90% of yield
• Do not damage existing reinforcement
• Drill anchors in zones to allow drilling in areas
• Full depth holes minimum spacing 6”
• Reinforce downstream sill as a beam to span potential gaps in anchors
Anchor holes were drilled in “Quadrants” and “Zones”.

12 total quadrants, R1-R6, L1-L6
16 holes per U/S zone, 8 holes per D/S zone.
REINFORCEMENT ANCHORS, CAGE, AND PLACEMENT
SILL ANGLE PLACEMENT

Grouting performed Wednesday, September 25
24-hour concrete test was at 1100 psi

Would we make 4000 psi design strength?
Compressive Strength of Concrete Cylinders

<table>
<thead>
<tr>
<th>Specimen ID</th>
<th>Date Tested</th>
<th>Age (Days)</th>
<th>Diameter (in)</th>
<th>Length (in)</th>
<th>Area (in²)</th>
<th>Type of Cap</th>
<th>Maximum Load (lbf)</th>
<th>Fracture Type / Remarks</th>
<th>Compressive Strength (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>07022433-8-C511</td>
<td>09/24/19</td>
<td>1</td>
<td>4.00</td>
<td>8.00</td>
<td>12.57</td>
<td>U</td>
<td>45070</td>
<td>3 FC</td>
<td>3590</td>
</tr>
<tr>
<td>07022433-8-C512</td>
<td>09/24/19</td>
<td>1</td>
<td>3.98</td>
<td>8.00</td>
<td>12.44</td>
<td>U</td>
<td>53150</td>
<td>4 FC</td>
<td>4270</td>
</tr>
<tr>
<td>07022433-8-C513</td>
<td>09/25/19</td>
<td>2</td>
<td>4.00</td>
<td>8.00</td>
<td>12.57</td>
<td>U</td>
<td>62430</td>
<td>5 FC</td>
<td>4970</td>
</tr>
<tr>
<td>07022433-8-C514</td>
<td>09/25/19</td>
<td>2</td>
<td>4.00</td>
<td>8.00</td>
<td>12.57</td>
<td>U</td>
<td>63490</td>
<td>4 FC</td>
<td>5050</td>
</tr>
<tr>
<td>07022433-8-C515</td>
<td>09/26/19</td>
<td>3</td>
<td>4.00</td>
<td>8.00</td>
<td>12.57</td>
<td>U</td>
<td>71260</td>
<td>3 FC</td>
<td>5670</td>
</tr>
<tr>
<td>07022433-8-C516</td>
<td>09/26/19</td>
<td>3</td>
<td>4.01</td>
<td>8.00</td>
<td>12.63</td>
<td>U</td>
<td>71940</td>
<td>5 FC</td>
<td>5700</td>
</tr>
<tr>
<td>07022433-8-C517</td>
<td>09/27/19</td>
<td>4</td>
<td>4.00</td>
<td>8.00</td>
<td>12.57</td>
<td>U</td>
<td>76906</td>
<td>2 FC</td>
<td>6120</td>
</tr>
<tr>
<td>07022433-8-C518</td>
<td>09/27/19</td>
<td>4</td>
<td>4.00</td>
<td>8.00</td>
<td>12.57</td>
<td>U</td>
<td>82121</td>
<td>3 FC</td>
<td>6530</td>
</tr>
<tr>
<td>07022433-8-C519</td>
<td>Hold</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FC</td>
<td></td>
</tr>
<tr>
<td>07022433-8-C510</td>
<td>09/30/19</td>
<td>7</td>
<td>4.00</td>
<td>8.00</td>
<td>12.57</td>
<td>U</td>
<td>82244</td>
<td>4 FC</td>
<td>6540</td>
</tr>
<tr>
<td>07022433-8-C511</td>
<td>10/21/19</td>
<td>28</td>
<td>4.00</td>
<td>8.00</td>
<td>12.57</td>
<td>U</td>
<td>101010</td>
<td>4</td>
<td>8040</td>
</tr>
<tr>
<td>07022433-8-C512</td>
<td>10/21/19</td>
<td>28</td>
<td>4.00</td>
<td>8.00</td>
<td>12.57</td>
<td>U</td>
<td>101365</td>
<td>3</td>
<td>8070</td>
</tr>
<tr>
<td>07022433-8-C513</td>
<td>10/21/19</td>
<td>28</td>
<td>4.00</td>
<td>8.00</td>
<td>12.57</td>
<td>U</td>
<td>106649</td>
<td>4</td>
<td>8490</td>
</tr>
<tr>
<td>07022433-8-C514</td>
<td>Hold</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Average 28 Day Compressive Strength (psi)

- **8200**

Required Strength (psi)

- **5000**
GROUT STRENGTH IN SECOND PLACEMENT

Compressive Strength of Concrete Cylinders

<table>
<thead>
<tr>
<th>Specimen ID</th>
<th>Date Tested</th>
<th>Age (Days)</th>
<th>Diameter (in)</th>
<th>Length (in)</th>
<th>Area (in²)</th>
<th>Type of Cap</th>
<th>Maximum Load (lbf)</th>
<th>Fracture Type / Remarks</th>
<th>Compressive Strength (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>07022433-11-C11</td>
<td>09/26/19</td>
<td>1</td>
<td>4.00</td>
<td>8.00</td>
<td>12.57</td>
<td>U</td>
<td>1050</td>
<td>3 FC</td>
<td>80</td>
</tr>
<tr>
<td>07022433-11-C12</td>
<td>09/26/19</td>
<td>1</td>
<td>4.00</td>
<td>8.00</td>
<td>12.57</td>
<td>U</td>
<td>1280</td>
<td>3 FC</td>
<td>100</td>
</tr>
<tr>
<td>07022433-11-C13</td>
<td>09/26/19</td>
<td>1</td>
<td>4.00</td>
<td>8.00</td>
<td>12.57</td>
<td>U</td>
<td>18560</td>
<td>4 FC</td>
<td>1480</td>
</tr>
<tr>
<td>07022433-11-C14</td>
<td>09/27/19</td>
<td>2</td>
<td>4.00</td>
<td>8.00</td>
<td>12.57</td>
<td>U</td>
<td>35310</td>
<td>4 FC</td>
<td>2810</td>
</tr>
<tr>
<td>07022433-11-C15</td>
<td>09/27/19</td>
<td>2</td>
<td>4.00</td>
<td>8.00</td>
<td>12.57</td>
<td>U</td>
<td>56047</td>
<td>5 FC</td>
<td>4460</td>
</tr>
<tr>
<td>07022433-11-C16</td>
<td>09/28/19</td>
<td>3</td>
<td>4.00</td>
<td>8.00</td>
<td>12.57</td>
<td>U</td>
<td>66380</td>
<td>4 FC</td>
<td>5280</td>
</tr>
<tr>
<td>07022433-11-C17</td>
<td>10/02/19</td>
<td>7</td>
<td>4.00</td>
<td>8.00</td>
<td>12.57</td>
<td>U</td>
<td>91897</td>
<td>5</td>
<td>7310</td>
</tr>
<tr>
<td>07022433-11-C18</td>
<td>10/02/19</td>
<td>7</td>
<td>4.01</td>
<td>8.00</td>
<td>12.63</td>
<td>U</td>
<td>91199</td>
<td>3</td>
<td>7220</td>
</tr>
<tr>
<td>07022433-11-C19</td>
<td>Hold</td>
<td>Hold</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07022433-11-C110</td>
<td>10/23/19</td>
<td>28</td>
<td>4.00</td>
<td>8.00</td>
<td>12.57</td>
<td>U</td>
<td>147290</td>
<td>5</td>
<td>11720</td>
</tr>
<tr>
<td>07022433-11-C111</td>
<td>10/23/19</td>
<td>28</td>
<td>4.00</td>
<td>8.00</td>
<td>12.57</td>
<td>U</td>
<td>151223</td>
<td>3</td>
<td>12030</td>
</tr>
<tr>
<td>07022433-11-C112</td>
<td>10/23/19</td>
<td>28</td>
<td>4.00</td>
<td>8.00</td>
<td>12.57</td>
<td>U</td>
<td>150695</td>
<td>3</td>
<td>11990</td>
</tr>
<tr>
<td>07022433-11-C113</td>
<td>09/27/19</td>
<td>2</td>
<td>4.00</td>
<td>8.00</td>
<td>12.57</td>
<td>U</td>
<td>57056</td>
<td>4 FC</td>
<td>4540</td>
</tr>
</tbody>
</table>

Average 28 Day Compressive Strength (psi): 11920

Required Strength (psi): 5000
SEPTEMBER 5
Lock operators observe issues closing the lock gate and cease lock operations for inspection.

SEPTEMBER 6
Engineers conclude there is a leak in the lock. Contract awarded to de-water and inspect.

SEPTEMBER 7
Lock is de-watered for inspection.

SEPTEMBER 9
Engineers determine the concrete sill under downstream gate failed. Sill demolition begins. Emergency contract awarded to construct new sill.

SEPTEMBER 11
Demolition and clean-up of sill complete. Drilling through concrete for rebar begins.

SEPTEMBER 12
Construction complete and return to service. First barges enter at 7:20 p.m. 23 barges pass in 1 day (typically 7 per day).

SEPTEMBER 20
Rebar epoxy and anchoring installation complete.

SEPTEMBER 19
Drilling of holes for rebar complete.

SEPTEMBER 16
Cutting and demolition to expose existing reinforcement.
LESSONS LEARNED

Could this failure have been avoided?

• Construction change to the design

• Different actual load than assumed

• Failure to prepare concrete properly, which produced a poor bond

• Could we have seen this during the 2017 inspection?

• Instrumentation to diagnose problems is being added
The lock opened September 27 at 1900
Great team; many different members
Single goal