MT. ST. HELENS SRS CREST RAISE

Jeremy Appt, PE Portland District

Meeting with American Council of Engineering Companies
10 May 2022

Controlled by: U.S. Army Corps of Engineers

Controlled by: CENWP-ENC

CUI Category: General Critical Infrastructure Info

Limited Dissemination Control: FEDCON POC: Jeremy Appt 503.808.4912

MT. ST. HELENS SRS CREST RAISE

Jeremy Appt, PE Portland District

Meeting with American Council of Engineering Companies
10 May 2022

Controlled by: U.S. Army Corps of Engineers

Controlled by: CENWP-ENC

CUI Category: General Critical Infrastructure Info

Limited Dissemination Control: FEDCON POC: Jeremy Appt 503.808.4912

- CREST RAISE (2012)
- CREST RAISE (2023)

The Oregonian Foreast: cloudy, high, 68; low, 50; report on Page C8

GENERAL BACKGROUND

- The 18 May 1980 eruption of Mount St. Helens in Washington State resulted in a debris avalanche of approximately 2.3 billion cubic meters (3 billion cubic yards).
- Sediments eroding from the avalanche and depositing downstream in the lower Cowlitz River decrease the capacity of the river and increase flood risk for downstream communities.
- In 1985 USACE, Portland District developed a 50-year plan to manage the sediment and maintain authorized flood risk levels along the Cowlitz River.
- The main feature of the plan was the Sediment Retention Structure (SRS) on the North Fork Toutle River.
- The SRS was constructed from 1987 to 1989 for the single purpose of trapping sediment eroding from the Mount St. Helens debris avalanche

PROJECT LOCATION

- Location: North Fork Toutle River
 - River mile 13.2
 - 30.5 miles above mouth of Toutle River, Washington State
 - 45 miles NNE of Portland, Oregon

– Purpose:

- · The SRS was proposed and designed as a retention structure to impound debris and sediments eroding from the North Fork Toutle River valley debris avalanche deposit.
- The debris and sediments are a result of the eruption of Mt. St. Helens in May 1980

Not a dam because the long term configuration does not meet the criteria for pool head or storage volume

PROJECT FEATURES

Major Project Features

- Embankment
- Outlet Works
- Spillway

EMBANKMENT DAM AXIS PROFILE

DAM CROSS SECTION AND FOUNDATION PROFILE

STATION 21+00 (EMBANKMENT DAM AXIS)

TAS: N/A (no active storage)

Pool of Record 954.6 ft-NAVD88 (09 Dec 2015): 80% of dam height

BEDROCK GEOLOGY

PROJECT FEATURES

Major Project Features

- Embankment
- Outlet Works
- Spillway

CUI

US Army Corps of Engineers

U.S.ARMY

SPILLWAY: OVERVIEW OF CURRENT FEATURES

RCC SLAB DAMAGE/EROSION

Photo 19. Erosion and undermining downstream of RCC patch near Sta. 30+00. (date unspecified).

Photo 82. RCC patch at Sta 30+00. Erosion and undercutting at downstream edge.

Photo 83. RCC patch at Sta 30+00. Erosion and undercutting up to approximately 3 feet at downstream edge.

SPILLWAY: 1997 SPILLWAY REPAIRS

- 1. Placement of RCC along the left wall of the spillway up to original spillway grade.
- 2. Placement of RCC along the crest to elevation 942 feet from the crest centerline to the left wall and placement of RCC from the crest centerline to about 100 feet from the right wall to protect most of the crest from erosion
- 3. Excavation of a notch in the existing RCC located about half-way down the spillway to facilitate water passage toward the center of the spillway and away from the left wall
- 4. Placement of RCC from the existing access road around the approach pier to the spillway crest to facilitate access into the spillway.

OUTLET WORKS: PLAN AND PROFILE

OUTLET WORKS VALVE PIT

SECTION (A)

PLAN - CENTER MONOLITH

CREST RAISE (2012)

SPILLWAY: PLAN AND PROFILE (2012 RAISE)

Crest raised 7-feet above existing (8,950 CY)

Low Flow Channel Excavation (8,660 CY)

Low flow Notch at 10% slope

Spillway crest: EL 950 ft-NAVD88 (947 ft-NGVD29)

Maximum discharge capacity: OBM of 228,000 cfs

Maximum discharge to date: 12,200 cfs (2015)

Spillway flows continuously

CREST RAISE – EAST WALL (2012)

CUI

5/10/2022

CARE AND DIVERSION (2012)

CUI

Contractor designed cofferdams and flow conveyance

Split flow in spillway

Built the low flow section first

10 culverts for minimum flow depth of 12-inches

Designed to pass median flow for IWW period of 340 CFS

Fish Rescue Plan

CUI 5/10/2022

ROCK EXCAVATION (2012)

CUI

Rock exposed in the low flow channel

Most excavated with a dozer and ripper hook, some required hydraulic ram on an excavator

CUI 5/10/2022

FOUNDATION PREPARATION (2012)

Contractor tried various means and methods to prepare the foundation

- pressure wash was effective but interfered with placing RCC on dry surface
- Vacuum truck was effective but was very slow

Ultimately, Gov't approved using a sweeper

CUI

5/10/2022

BATCH PLANT (2012)

RCC mix designed by Contractor

Issues... Government had to

- Hire a SME to provide QA/QC training
- Ordered Contractor to hire a 3rd party SME to assist with mix design and QC testing

CUI

5/10/2022

RCC TEST SECTION (2012)

CUI

Contract requirement and highly valued by both Contractor and Government

CUI 5/10/2022

CREST RAISE (2023)

SPILLWAY RAISE PROJECT 2023

CUI

5/10/2022

Crest raised 10-feet above existing (33,000 CY)

Plunge Pool Excavation (2,000 CY)

Low flow Notch at 10% slope Spillway flows continuously

Spillway crest: 959 ft-NGVD29 Low flow notch at 955.5 ft

Maximum discharge capacity: OBM of 228,000 cfs

Berms 3.5 feet high, 8 feet wide

Apron with vertical drain holes

LOW FLOW CHANNEL (2023)

Low flow Notch at 10% slope

Spillway Notch: 955.5 ft-NGVD29

3-inch bump to avoid stranding fish in low flows

Plunge Pool 2-feet deep

CUI

In-water Work Window (IWW) is limited

July 1 to Oct 4

Batch plant, and test section can be done prior to entering spillway

Outlet Works can be decommissioned any time

RCC placement volume is 3-times that placed for first raise and the contractor barely made it **RCC Placement**

River diversion must maintain flow for fish during transition. Siphons may be required to get over first raise

Traffic will be high volume and space is limited

Most labs do not have ERDC validation for the testing of RCC and it takes \$ + 90-days

Acquisition

Industry Days planned for mid-May

- SAM.gov for details
- Full and open competition using Best Value Trade Off (BVTO)

CUI 5/10/2022 END

CUI

CUI

5/10/2022

DAM CROSS SECTION AND FOUNDATION PROFILE

Pool of Record 954.6 ft-NAVD88 (09 Dec 2015): 80% of dam height

SPILLWAY: PLAN AND PROFILE (ORIGINAL)

Type and number of gates: N/A

Original spillway crest: EL 943 ft-NAVD88 (940 ft-NGVD29) (1/1 AEP, always flowing)

Maximum discharge capacity: 228,000 cfs

Maximum discharge to date: 12,200 cfs (2015)

Spillway flows continuously

Vulnerabilities: Failing shotcrete walls, vegetation, erosion and damage to RCC spillway fill

Performance: Acceptable performance to date. Repair in 1997 following initial flows

Spillway crest raised 7 feet with RCC in 2012 to EL 950 ft-NAVD88 (947 ft-NGVD29).

U.S.ARMY

OUTLET WORKS: PLAN AND PROFILE

